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Both metacognitive and associative models have been proposed to account for
children’s strategy discovery and use. Models based on only metacognitive or only
associative mechanisms cannot entirely account for the observed mix of variability
and constraint revealed by recent microgenetic studies of children’s strategy change.
We propose a new approach where metacognitive and associative mechanisms inter-
act in a competitive negotiation. This approach provides the flexibility to model the
observed variability and constraint.  1997 Academic Press

A variety of mechanisms have been proposed to account for strategy dis-
covery in both adults and children. Most can be classified into one of two
groups: Metacognitive and associative mechanisms. Metacognitive mecha-
nisms provide the representations and processes necessary to explain the
part of human cognition that is explicit, flexible, and responsive to problem-
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solving goals. Associative approaches provide representations and processes
suited to explaining the part of human cognition that is implicit, fast, and
responsive to nuances of the environment. Although precise definitions have
varied, those interested in strategy use have long been concerned with de-
scribing the ways that these two classes of mechanisms interact in the discov-
ery and generalization of problem solving strategies (e.g., Flavell, Miller,
& Miller, 1993; Greeno, Riley, Gelman, 1984; Hiebert & LeFevre, 1993;
Karmiloff-Smith, 1992; Piaget, 1976, 1978; Schneider & Pressley, 1989).

In this article we revisit the question of how metacognitive and associative
mechanisms interact while children learn new problem solving strategies.
We begin by describing the properties of the two groups of mechanisms
and the behavior that would be expected to be observed in a child using
metacognitive or associative mechanisms to discover a new strategy. We
then review empirical and computational evidence suggesting that neither
group of mechanisms alone can account for a particular strategy discovery
on which a substantial database exists: young children’s invention of the min
strategy for solving simple arithmetic problems. Based on consideration of
this database, we develop a new account of strategy discovery, one in which
metacognitive and associative mechanisms are coordinated through a process
of competitive negotiation. We believe that this approach can provide both
the sensitivity to environmental influences and the flexibility in adopting
problem solving goals that are needed to model strategy discovery processes
in many domains.

STRATEGY DISCOVERY THROUGH METACOGNITIVE AND
ASSOCIATIVE MECHANISMS

Metacognitive and associative mechanisms have distinct properties and
thus make distinct predictions about how strategies are discovered and gener-
alized. Metacognitive mechanisms share the assumption that strategies are
invented and selected by children explicitly reflecting upon their understand-
ing of task demands, available cognitive resources, and their own experience
solving similar problems. As they gain experience in a domain, children
accumulate an increasingly deep, well-organized store of explicit knowledge
about their competencies and about the particulars of the task. Effective strat-
egy use depends on the problem solver’s ability to use this explicit knowl-
edge to select the most adaptive strategies and, if no existing strategy is
deemed appropriate, to plan a new problem solving approach.

Associative mechanisms are defined by the assumption that strategy selec-
tion is determined by a set of learned correlations among tasks, actions, and
outcomes. Usually, the correlational knowledge is implicit rather than ex-
plicit. During problem solving, actions compete with one another on the basis
of how strongly they are associated with features of the particular task and
with past outcomes. If the chosen actions lead to success, the links between
them and the task will be strengthened, making it more likely that they will
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be chosen in the future. Within this approach, expert strategy users are those
who have a well-tuned set of associations that automatically activate the best
strategies for a wide range of tasks. Because statistical associations can only
be tuned by experience, what distinguishes experts from novices is primarily
the breadth and depth of the expert’s problem-solving experience in a partic-
ular domain.

The different representations and processes associated with metacognitive
and associative mechanisms produce concomitant differences in accessibil-
ity, flexibility, and speed. Because metacognitive knowledge is potentially
verbalizable, it can be accessed and modified through reflective mechanisms.
It can be used to construct detailed plans for future action or to debug past
failures. It also can be argued about with collaborators or learned from read-
ing a book. Because direct problem-solving experience is not necessary to
access and modify metacognitive knowledge, it enables children to reason
their way to solutions in novel contexts, without the need to engage in trial-
and-error search. This flexibility comes at a price, however. Metacognitive
mechanisms, such as planning or means-ends analysis, are inherently serial
and slow. They also are resource-intensive; even on simple tasks, the cogni-
tive demands of such reasoning can push working memory to its limits, or
beyond (Carpenter, Just, & Shell, 1990).

Associative mechanisms have complementary strengths and weaknesses.
Because problem-solving experience is summarized in an association matrix
or a network of connection strengths, associative knowledge provides rapid
and adaptive fits between strategies and problem-solving contexts. Because
they operate without the need for reflective awareness, associative mecha-
nisms allow for the automatization of skills and the consequent freeing up
of processing resources. However, because the associative knowledge base
is largely implicit, it cannot be directly examined or modified through meta-
cognitive mechanisms. Therefore, associative learning requires extensive
problem solving experience. Also, because associative learning tends to be
quite specific, it does not provide a useful base for coping flexibly with novel
contexts. To discover new strategies in such contexts, a problem solver rely-
ing only on associative mechanisms would have little recourse but to fall
back on trial-and-error search (Holland, Holyoak, Nisbett, & Thagard, 1986).

Few would argue that children’s strategy use could be accounted for by
the operation of only metacognitive or associative mechanisms. Each mecha-
nism captures something essential about children’s thinking, and each almost
certainly plays a role in the discovery and generalization of problem solving
strategies. The crucial unresolved issues concern what role each plays and
how these roles are coordinated.

One influential attempt to deal with these issues is the representational
translation account pioneered by Piaget (1976; 1978) and later championed
by Karmiloff-Smith (1992). Common to both theorists is the argument that
problem solving knowledge exists initially in an implicit procedural repre-
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sentation and is later translated into an explicit conceptual representation.
Within these accounts, when children are novices in a domain, they engage
in trial-and-error experimentation to see what works. If they stumble across
an action that leads to a successful solution, they more frequently use that
action on future problems. Through repeated trial-and-error experience, chil-
dren build a repertoire of successful strategies governed by associative mech-
anisms that require no explicit, metacognitive input. Once children are reli-
ably successful, they begin a process of ‘‘representational redescription’’
in which they translate their previously implicit strategies into an explicit
representation that can be accessed through reflective metacognitive pro-
cesses. By gaining reflective access to the strategy, children become able to
adapt and generalize it in new contexts.

A second approach to coordinating metacognitive and associative knowl-
edge can be seen in models constructed to explain the automatization of
problem solving skills in both adults and children (e.g., Anderson, 1990).
Translation in these approaches flows in the opposite direction of that pro-
posed by Karmiloff-Smith. Initial strategies are seen as explicit plans of ac-
tion whose successful execution requires high levels of intentional metacog-
nitive control. Once children have sufficient practice in the domain, the
strategy is compiled into an efficient procedural representation that can be
activated and executed without the need for metacognitive micromanage-
ment. Often, this translation process is seen as overwriting the original meta-
cognitive version of the strategy. Supporting this view are the many tasks on
which we are sufficiently expert that we can no longer describe the strategies
verbally. For example, almost all adults can tie their shoes, but to teach a
child how to do it, they have to reinvent a verbal description of the skill.

Both Karmiloff-Smith’s and Anderson’s approaches recognize that using
problem solving strategies is sometimes explicit and effortful and sometimes
implicit and resource-lean. Although the two approaches differ in whether
translation occurs from metacognitive to associative knowledge, or in the
opposite direction, both share an important assumption: Metacognitive and
associative knowledge do not compete with one another for control of prob-
lem solving. One group of mechanisms is responsible for discovering a strat-
egy and the other group of mechanisms is responsible for generalizing it.
Translation passes control from one group of mechanisms to the other.

The two versions of the translation story make opposite predictions about
the behavior that should be expected to accompany children’s discovery of
new strategies. Because children discover new strategies through trial-and-
error in the associative-to-metacognitive version, one would predict that:

1. Discoveries should occur when children are at impasses and do not have
appropriate strategies for solving the problems (which is why they resort to
trial and error);

2. Discoveries should not involve metacognitive insight (which only
comes later);
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3. Children will try both successful strategies and unsuccessful strategies
(because they are relying on trial and error).

In the metacognitive-to-associative version of strategy discovery, the im-
plications of the discovery through reflective, explicit reasoning are that:

1. Discoveries can occur at impasses, but they also could occur through
noticing something interesting about prior solutions or through direct instruc-
tion by another problem solver;

2. Discoveries should be accompanied by explicit, metacognitive knowl-
edge (because the strategy is originally represented in explicit, declarative
form);

3. Discoveries could be restricted to only successful strategies (because
explicit reasoning allows problem solvers to make predictions about the suc-
cess of a new strategy before they commit to trying it out).

IS STRATEGY DISCOVERY METACOGNITIVE
OR ASSOCIATIVE?

How well do these contrasting accounts of strategy discovery fit the empir-
ical evidence? One discovery on which a sufficient database exists to answer
this question is children’s invention of the min strategy for adding numbers.
By the time they enter kindergarten, most children use multiple strategies
to solve addition problems (Siegler & Shrager, 1984). Their single most com-
mon approach is the sum strategy, where they first count out each addend
on their fingers and then count all of the raised fingers to get the sum. For
example, to solve 2 1 3, a child would count, ‘‘1,2 . . . 1,2,3 . . . 1,2,3,4,5.’’
By the middle of first grade, most children discover the min strategy, where
they represent the larger addend by simply saying it and then counting up
from it the number of times indicated by the smaller addend. For 2 1 3, a
child would count ‘‘3,4,5’’ or ‘‘4,5.’’

What does children’s behavior look like when they make this discovery?
Siegler and Jenkins (1989) identified 4- and 5-year-olds who knew how to
add via the sum strategy but who did not yet know the min strategy. Over
an 11-week period, these children were videotaped as they participated in
roughly 30 sessions each of addition problem solving. After solving each
problem, children were asked to explain how they came to their solution.
By analyzing these immediate retrospective verbal reports in concert with
the videotaped records of children’s ongoing behavior, it was possible to
obtain accurate assessments of the strategy that children used to solve each
addition problem (Siegler, 1987).

These trial-by-trial strategy assessments made it possible to identify the
exact trial on which children first used the min strategy. By analyzing chil-
dren’s behavior before, during, and after their discovery of the min strategy,
Siegler and Jenkins generated an empirical profile for min discovery that did
not correspond completely with the predictions of either the metacognitive
or the associative accounts of strategy discovery. As we will describe, in
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some aspects of discovery where existing approaches would predict regular-
ity, Siegler and Jenkins found variability; in other aspects where existing
approaches would predict variability, Siegler and Jenkins found regularity.
The profile of strategy discovery we present below is not limited to Siegler
and Jenkins’ study, but is consistent with a more recent study of min discov-
ery from an unrelated laboratory (Ward, Hawk, & Grupe, 1995) as well as
with findings from studies of discovery in domains other than simple arith-
metic (Siegler, 1996; Siegler & Crowley, 1991).

Discoveries Occurred at Varied Times and on Varied Problems

Children began the study with similar knowledge of addition, they encoun-
tered the same problems during the study, and yet they discovered the min
strategy in widely varying ways. Through pretesting, Siegler and Jenkins
ensured that children who participated in the study did so from approximately
the same starting point. None of the children used the min strategy, but they
did use other strategies well enough to generate the correct answer on at least
50% of addition problems with addends 1–5. Further, all children already
possessed high levels of competence in counting and magnitude comparison,
two prerequisite skills for construction of the min strategy.

Despite the similarity of their initial knowledge, there was little uniformity
in when children discovered the min strategy. The discoveries occurred from
the 2nd to the 22nd session; in real time, the range was 2–73 days. The
discoveries occurred on disparate problems. The seven children who discov-
ered the min strategy did so on 6 different problems, ranging from easy
problems (4 1 1) to difficult ones (3 1 9).

Even in examining the sequence of learning of individual children, there
was nothing atypical about the problems or the context in which the min
strategy first emerged. Discoveries did not typically occur on problems where
the child was at an impasse; the particular problems on which discoveries
occurred were not unusually difficult, and children’s success on prior prob-
lems within the same session was comparable to their success in the study
as a whole. Moreover, children often first used the min strategy on a problem
that they previously solved correctly using a different addition strategy.

Discoveries Occurred with Varying Degree of Reflective Insight

After children solved each addition problem, the experimenter asked them
to explain how they had computed the answer. Examination of these immedi-
ate retrospective protocols revealed that on the trial where children first used
the min strategy, there was considerable variability in how much insight
children had into the strategy they had just discovered. In self-reports given
immediately after the first trial where they used the min strategy, roughly
half of the children showed metacognitive awareness of the new strategy.
Typifying this insight was Brittany’s protocol:
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E: OK Brittany, how much is 2 1 5?
B: 2 1 5—[whispers] 6, 7—it’s 7.
E: How did you know that?
B: [excitedly] Never counted.
E: You didn’t count?
B: Just said it—I just said after 6 something—7—6, 7.
E: You did? Why did you say 6, 7?
B: Cause I wanted to see what it really was.
E: OK, well—so, did you—what—you didn’t have to start at one, you

didn’t count 1, 2, 3, you just said 6, 7?
B: Yeah—smart answer.
However, the other half of the children showed little or no explicit under-

standing of their newly discovered strategy. Some of them gave confused,
fragmented explanations that referred only indirectly to the strategy they
had used. Others showed even clearer evidence that they did not explicitly
understand what they had just done. Whitney’s protocol was typical of this
subgroup. On the videotape, she can be clearly seen using the min strat-
egy while counting out on her fingers. However, when asked to explain how
she computed the answer, she denied that she had counted out an answer at
all:

E: How much is 4 1 3?
W: 5, 6, 7, I think it’s 7.
E: 7, OK, how did you know that?
W: Because I’m smart and I just knew it.
E: Can you tell me, I heard you counting. I hear you. Tell me how you

counted.
W: I just—I didn’t count anything—[long pause] I just added numbers

onto it.
E: Can you tell me how you added numbers?
W: No.

Greater Reflective Insight Was Associated with Faster Generalization of
the New Strategy

After children discovered the min strategy, they generalized it to other
problems surprisingly slowly. In the five sessions that followed their discov-
ery of the strategy, children used the new approach on only 12% of the trials
on which they counted out answers. On the remaining 88% of trials on which
they counted, they continued to use less efficient strategies such as counting
from one.

The failure of children to immediately generalize the min strategy suggests
that generalization of the new strategy was determined by associative mecha-
nisms. Even children such as Brittany, who explicitly noted that the new
strategy was smart, did not use it very often. The limited generalization pre-
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sumably occurred because the associations between the new strategy and
arithmetic problems were not strong enough to allow the strategy to reliably
win competitions with well-established approaches such as the sum strategy.
After repeated successful use, the min strategy’s associations with the task
presumably become stronger and come to dominate the sum strategy. The
min strategy did, in fact, emerge as the dominant counting strategy by the
end of the Siegler and Jenkins study.

However, the evidence suggested that generalization was not exclusively
influenced by associative mechanisms. Recall that at the moment when they
discovered the min strategy, children exhibited variability in how much in-
sight they had into the workings of their new creation. Those who had shown
the greatest level of explicit insight at the moment of discovery generalized
the strategy faster and more completely (min constituted more than 40% of
all subsequent uses of counting strategies) than children who had shown the
least insight (min constituted less than 10% of subsequent uses of a counting
strategy). All children still exhibited uneven generalization, but metacogni-
tive awareness appeared to accelerate the generalization process.

Discoveries Were Constrained in Ways That Avoided Illegitimate
Strategies

In the midst of the diversity in when and how the min strategy was discov-
ered, one striking regularity emerged: Children never discovered illegitimate
addition strategies. By illegitimate strategies, we mean strategies that violate
the necessary goal structure of the domain. In the case of addition, all legiti-
mate strategies are strategies that accomplish three subgoals: (1) quantita-
tively represent the first addend, (2) quantitatively represent the second ad-
dend, and (3) quantitatively represent the combined set of both addends.
Legitimate addition strategies vary in how they satisfy these three subgoals.
For example, in the sum strategy, all of the subgoals are met by counting;
in the min strategy, only some of the subgoals are met by counting; in re-
trieval, no counting is required to meet the subgoals. However, without ap-
propriate procedures to satisfy each subgoal, no addition strategy could be
successful.

When considered along with children’s self-reports regarding their strat-
egy use, this finding suggests that children’s discovery of the min strategy
involved at least two distinct sets of mechanisms. One way to generate only
legitimate strategies is through metacognitive analysis. If children had in-
sight into the goal structure of a legitimate addition strategy, they could have
constructed new strategies by reflecting upon the potential for different pro-
cedures to meet each of the three essential addition subgoals. With sufficient
metacognitive knowledge and the ability to make accurate projections of the
potential of a new strategy, children would be expected to only try legitimate
strategies. However, when asked to explain their newly discovered min strat-
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egy, only about half of the children gave evidence that they had access to
the type of explicit understanding that such metacognitive analysis would
require.1

The opaque explanations given by the remaining children suggested that
their discovery of the min strategy had not been the result of high-level meta-
cognitive analysis. However, the evidence was also not consistent with dis-
covery through associative mechanisms alone. If children possessed only
associative knowledge of how well existing strategies worked on problems,
they would need to discover new strategies via trial-and-error. Such an ap-
proach would almost certainly lead at least some children sometimes to com-
bine familiar addition procedures into illegitimate strategies. Yet surpris-
ingly, despite their lack of awareness, these children managed to discover
the min strategy without ever trying flawed strategies.

Siegler and Jenkins (1989) suggested that this lack of trial and error was
possible because the preschoolers possessed a goal sketch for simple arithme-
tic. The goal sketch was hypothesized to specify the subgoals that all legiti-
mate arithmetic strategies must satisfy, thus directing discovery processes
away from procedures that would fail to satisfy these essential subgoals and
toward procedures that would succeed. Consistent with this hypothesis, a
later experiment demonstrated that kindergartners who did not yet use the
min strategy nonetheless recognized it as legitimate, even though they could
not verbalize a rationale for their judgment (Siegler & Crowley, 1994). The
same children recognized that a strategy that did not meet all of the subgoals
was inferior. However, none of the children could state why the one unfamil-
iar strategy was smart and the other not smart. Thus, children can evaluate
alternative novel addition strategies on the basis of implicit knowledge; such
evaluations seem likely to contribute to their not needing to try flawed strate-
gies before discovering the min approach. Accounting for this surprising
ability was a major motivation for developing the account of strategy discov-
ery presented in this article.

COMPUTATIONAL ACCOUNTS OF STRATEGY DISCOVERY

The Siegler and Jenkins (1989) findings suggest that discovering the min
strategy may involve more than metacognitive or associative mechanisms
working alone. Two computer simulation models provide support for this
conclusion. One model begins knowing the sum strategy and discovers the
min strategy through the use of top-down metacognitive reasoning (Neches,

1 Evidence of explicit understanding of the min strategy should not be interpreted as conclu-
sive evidence that children used metacognitive mechanisms to discover the strategy. Discover-
ies could have been generated by other means and then interpreted moments later at the meta-
cognitive level. However, existence of explicit understanding does suggest that metacognitive
mechanisms could have participated in the discovery, since children could express sufficient
metacognitive understanding so close to the moment of discovery.
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1987). The other simulation makes the sum-to-min transition primarily
through associative mechanisms (Jones & VanLehn, 1991). The performance
produced by these models suggests that although metacognitive and associa-
tive mechanisms are each sufficient to invent the min strategy, the operation
of these mechanisms necessarily produces behavior unlike that in children’s
discoveries.

A Task Analysis of the Sum-to-Min Transition

The first step in modeling the sum-to-min transition is to represent the
two strategies in terms of their component procedures and to determine the
changes in these procedures that would be necessary for children who know
the sum strategy to discover the min strategy.

In simulation models built to explain how children adaptively choose
among existing strategies, the constituent procedures of a single strategy are
typically represented as encapsulated chains of action that are activated, exe-
cuted, and updated as monolithic entities (Siegler & Shrager, 1984; Siegler &
Shipley, 1995). Once a strategy is chosen for execution, it runs from begin-
ning to end without pause. After success or failure, credit or blame is as-
signed to the entire strategy. Individual procedures within each strategy are
never directly accessed or modified. When the goal of a model is to explain
how choices change between established competing strategies, it is appro-
priate to make strategies the unit of analysis.

However, if we are to explain not just how choices among strategies
change, but also how strategies are created, the most appropriate unit of
analysis is component procedures from which new strategies can be created.
Different strategies for a domain share many of the same procedural compo-
nents. For example, the sum and min strategies both depend on counting
procedures that are established problem solving skills in their own right,
skills that exist before children begin to solve arithmetic problems (Gel-
man & Gallistel, 1978). It seems unlikely that each arithmetic strategy main-
tains independent counting procedures. Instead, strategies that depend on
similar procedures probably access these procedures during their execution.
This shifts the definition of strategies from a single, static chain of procedures
that can be activate with a single choice, to dynamic assemblies of procedures
whose successful execution requires a series of choices about which proce-
dure to use next.

Figure 1 outlines how changes among component procedures could enable
a child who knows the sum strategy to discover the min strategy. As shown
in the figure, six procedural steps constitute the sum strategy: (1) assigning an
addend to be represented first (A1); (2) assigning an addend to be represented
second (A2); (3) counting out the value of A1; (4) counting out the value
of A2; (5) counting out the part of the sum represented by A1; and (6) count-
ing out the part of the sum represented by A2.

From this base of knowledge of the sum strategy, discovery of the min
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strategy occurs in three steps. The first step is recognizing that Steps 3 and
4 are not necessary, because the counting always produces the original value
of the addends. This discovery enables the problem solver to choose to by-
pass these steps. The resulting strategy—the shortcut sum approach—gener-
ates correct answers through Steps A1, A2, A5, and A6. Consistent with the
view that this step occurs before discovery of the min strategy and is transi-
tional to it, 5 of the 7 subjects who discovered the min strategy in Siegler
and Jenkins (1989) discovered the shortcut sum approach either two sessions
before they discovered the min strategy, one session before the discovery,
or in the same session.

Two further discoveries enable the problem solver who knows the shortcut
sum strategy to discover the min strategy. First is the discovery that the order
in which addends are chosen to be represented does not need to conform to
the order in which they are stated. This realization enables the problem solver
to represent the larger addend first, regardless of whether it is first or second
in the original problem. This enhances the efficiency of both the shortcut sum
and, later, the min strategy. Second, the problem solver needs to discover that
counting out the value of A1 (the original Step 5) always results in a subtotal
equal to the value of A1. This enables the problem solver to delete the step
that counts out the part of the sum represented by A1. Having made these
three discoveries, the problem solver can use the min strategy.

This path from sum to min was the one followed by most children in
Siegler and Jenkins (1989). Although all three discoveries seem necessary,
they do not need to be made in the order depicted in Fig. 1. For example,
some children made the discovery that addend order can be reversed in the
context of the sum strategy, and reversed addend order before using either
the shortcut sum or min strategies.

Although the Siegler and Jenkins data indicate the typical path through
which children discover the min strategy, they do not specify the mechanisms
that generated that path. It is because empirical methods can only reveal so
much that psychologists create computer simulation models. These models
test hypothesized mechanisms to see whether they are sufficient to produce
the observed behavior. We next examine the performance of two simulations
of discovery of the min strategy to see how well they meet this test.

HPM: A Metacognitive Account of Strategy Discovery

In Neches’ Heuristic Procedure Modification (HPM) system, the min
strategy emerges as a result of the operation of reasoning heuristics that ‘‘rep-
resent metaknowledge about interesting properties of procedures’’ (Neches,
1987, p. 214). Among metacognitive accounts of strategy discovery, HPM
is noteworthy for its level of specificity about mechanisms of strategy discov-
ery and how those mechanisms produce new strategies. HPM includes 21
metacognitive reasoning heuristics, including a heuristic to identify redun-
dant sequences of actions within a strategy, a heuristic to identify parts of
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a strategy that produce results irrelevant to the solution of a problem, and a
heuristic to compare alternative procedures in terms of required cognitive
effort.

As it solves problems, HPM maintains a complete record of its activity.
The metacognitive agents constantly scrutinize this memory trace, searching
for redundant or inefficient steps. When such steps are identified, the meta-
cognitive agents specify how HPM should rewrite its strategy to eliminate
the offending procedures.

From sum to min. HPM begins as an addition novice that knows only
production rules that produce the sum strategy. From this beginning, the
program’s metacognitive heuristics make each of the three necessary insights
in three discrete steps. First, the redundancy-detection heuristic notices that
after it has represented the quantity corresponding to each addend, it invari-
ably performs the same sequence of counts that it just completed when count-
ing out the first addend. HPM transforms its addition strategy so that, rather
than always beginning the count of the represented addends from 1, it counts
from the value of the first addend. Now that the only reason to count out
the first addend is to provide a starting place for the sum count, HPM is
primed to achieve its next insight: The value of the first addend count is
always the same as the number name of the first addend. HPM then decides
that it no longer needs to count the first addend at all and rewrites its strategy
so that the sum count begins at the value of the first addend.

The simulation is now on the verge of the final insight that will allow it
to discover the min strategy. At this point in its development, it solves all
arithmetic problems by counting-on from the value of the first addend. Even-
tually, HPM notices that a particular pair of addends always produces the
same sum regardless of which addend is first despite the fact that the number
of counts needed to compute a sum varies with the order of the addends.
For example, the system notices that when solving 2 1 6, it makes six counts
to get to 8, but when solving 6 1 2 it requires only two. The efficiency
heuristics realize that it is always faster to begin counting-on from the larger
addend, and they rewrite HPM’s strategy to reflect this. The min strategy
has been discovered, and is subsequently used on all problems.

Evaluating the fit of HPM to the microgenetic data. Similar to the chil-
dren in Siegler and Jenkins (1989), HPM successfully makes the sum-to-
min transition without ever using an illegal addition strategy. The program’s
production rules, metacognitive heuristics, and detailed memory for past
problem-solving experience are carefully orchestrated so that each step in
the discovery process is constrained to produce a stable, legitimate procedure
for adding numbers.

However, to achieve these impressive constraints, HPM relies upon sev-
eral assumptions that are inconsistent with the empirical findings. Probably
the most serious inconsistency involved the hypothesized transition strategy
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of counting from the first addend. None of the children in Siegler and Jenkins
(1989) used this strategy before using the min strategy, and only one child
ever used it. Thus, it is not a good candidate as a transition strategy.

A second problem concerns the speed of learning. Similar to most metacog-
nitive accounts, discoveries in HPM occur as classic ‘‘Eureka’’ moments: The
system gains sudden insight into how it could transform its current approach
to create a more efficient strategy. Once the new strategy has been created, its
prior addition strategies are deleted and the new strategy is always used. Only
some of the children in Siegler and Jenkins (1989) demonstrated any type of
initial insight, and no subjects quickly generalized the new strategy.

A third problem involved the variability of discoveries. To successfully
navigate the sum-to-min transition HPM must replace each of its arithmetic
strategies in a particular order. Every incremental refinement creates the con-
ditions necessary for the next refinement to occur. Each time the system is
set in motion, the necessary sequence of refinements occurs in exactly the
same order at exactly the same time. Such deterministic precision is inconsis-
tent with the widespread variability that children exhibit as they discover the
min strategy. Each of the children in the Siegler and Jenkins study exhibited a
unique profile of strategy use leading to their discovery of the min strategy.

HPM’s strategy discovery machinery also makes substantial demands on
cognitive resources. The metacognitive heuristics operate continuously;
therefore, the system must always maintain sufficient attention and working
memory to simultaneously support the heuristics as well as the execution of
the strategy it is using to solve the current problem. At the same time, HPM
is also faithfully recording a trace of all ongoing problem-solving activity
and storing it in long-term memory. Although individuals might occasionally
be able to coordinate these cognitive tasks, it seems unlikely that it is a
common occurrence. It seems an especially daunting load for young children,
whose processing speed is limited (Kail, 1991).

GIPS: An Associative Account of Strategy Discovery

Jones and Van Lehn’s (1991) General Inductive Problem Solving system
(GIPS) illustrates a path to discovering the min strategy that relies primarily
upon associative learning mechanisms. Like HPM, strategies in GIPS are
implemented as the firing of a particular sequence of production rules. Also
similar to HPM, at each step during problem solving, GIPS examines all of
its rules to identify the one that best matches its current goals and the
problem-solving context. However, GIPS does not calculate this match in
an all-or-none fashion. Each rule in GIPS has a set of associative strengths
linking it to particular elements of the problem-solving context. GIPS
chooses rules by finding the one with the highest probability of being appro-
priate. These probabilities are defined as a function of the strength with which
the rule’s conditions are associated with the current problem-solving context.
After each successful use of a rule, GIPS strengthens the associations be-
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tween the rule and the context. After each unsuccessful use, the associations
are weakened.

From sum to min. When GIPS begins its run, its database is tuned so
that it always chooses the sequence of rules that correspond to the sum strat-
egy. As the system gains experience using this strategy, it extracts the same
correlation that was noted first by HPM’s metacognitive heuristic: The dupli-
cation between counting out the first addend and later counting the positions
of the combined representation that corresponds to the first addend. Eventu-
ally, the associations that express this correlation become strong enough to
cause GIPS to immediately fire the rules that constitute its sum count rather
than first firing the sequence of rules it uses to count up the addends sepa-
rately. At this point, GIPS has made the transition from the sum to the short-
cut sum strategy. On a problem such as 2 1 3, GIPS puts up two ‘‘fingers’’
while counting ‘‘1, 2’’ and then puts up three more ‘‘fingers’’ while counting
‘‘3, 4, 5.’’

As it uses the shortcut sum strategy to solve problems, further regularities
begin to emerge in the associative data base. First, GIPS learns that it is
more likely to get a problem correct when the first addend is also the larger
addend. The reason this is true is because the system is programmed to have
a higher probability of miscounts when simultaneously keeping track of two
counts, as is required when counting out the number corresponding to the
second addend in the shortcut sum strategy. The larger the number of counts
needed to represent the second addend, the higher the probability that a mis-
count during this phase will lead to a wrong answer. The correlation between
addend size and error rates continues to strengthen until GIPS chooses to
begin counting with the larger addend, regardless of whether it is first or
second.

At the same time GIPS is learning about addend order, it also is learning
the last associative regularity needed to discover the min strategy. Whenever
the system counts out an addend, the last number it ‘‘said’’ in the counting
sequence is always equal to the value of the addend itself. When this correla-
tion has been sufficiently strengthened, GIPS begins to represent the larger
addend by simply ‘‘saying’’ its value, and then counts on the number of
times required to represent the smaller addend. At this point GIPS can be
said to know the min strategy.

Evaluating the fit of GIPS to the microgenetic data. In at least two re-
spects, GIPS is consistent with the microgenetic data from Siegler and Jen-
kins (1989). First, by using the shortcut sum strategy as a transitional step
from the sum to the min strategy, GIPS mirrors the most common path identi-
fied by Siegler and Jenkins. Second, the gradual associative learning mecha-
nisms at the core of GIPS require that the simulation solve many addition
problems before it discovers the min strategy. This is consistent with the
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observation that most children discovered the min strategy after moderate
amounts of practice in the domain.

However, in two other respects, GIPS falls short of a full account of strat-
egy discovery. It does not exhibit strong constraints prior to discovery. In
fact, GIPS cannot keep itself from making mistakes. As associative strengths
fluctuate in GIPS, the simulation sometimes tries to execute a procedure that
consistently generates wrong answers. To avoid going down such dead ends,
GIPS is designed to stop and ask its human operator whether the procedure
it is about to attempt is, in fact, a legitimate piece of an addition strategy.
As Jones and VanLehn acknowledge, if GIPS were not told that execution
was wrong, it would develop wrong strategies. Children do not have the
luxury of having an expert monitor the legitimacy of the subprocedures
within their strategies, yet they still manage to discover the min strategy
without using illegitimate strategies of the type generated by GIPS.

GIPS also shows the too-rapid generalization exhibited by HPM. Both
systems only use one way of solving addition problems at a given time. Once
a new strategy is discovered, GIPS switches to using it exclusively. Jones and
VanLehn note that GIPS’ associative learning mechanisms are, in principle,
capable of being modified to exhibit the same selection among multiple strat-
egies as children show. However, even if GIPS were modified to maintain
multiple strategies and to choose among them, the system would remain
incapable of modeling the connection between increased awareness of the
new strategy and increased generalization. There is no facility in GIPS
through which metacognitive awareness could have any impact upon the
associative mechanisms of strategy selection.

Summary

At the most general level, both HPM and GIPS successfully model discov-
ery of the min strategy. Similar to children, the models begin by knowing
how to use the sum strategy and discover how to use the min strategy. Also
like children, neither HPM or GIPS requires direct instruction to discover
the new approach. They both make the discovery based on what they learn
about addition as they gain experience solving problems.

However, at the microgenetic level of analyses, neither the metacognitive
mechanisms of HPM nor the associative mechanisms of GIPS can provide
a complete account of the empirical data. Both approaches successfully
model only one of the four main aspects of strategy discovery identified by
Siegler and Jenkins (Table 1).

Like most metacognitive proposals, the mechanisms of HPM are well
suited to generating legitimate discoveries. Its heuristics continually adapt
strategies until they become optimally efficient. Because the metacognitive
mechanisms have unrestricted access to a complete memory trace of prior
problem-solving experience, they are able to prune strategies without ever
lopping off parts of the procedure that are essential to the strategy’s success.
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TABLE 1
Comparing Empirical Evidence and Computational Accounts

of the Discovery of the Min Strategy

Metacognitive Associative
mechanisms of mechanisms of

Observed behavior of preschoolers HPM GIPS

Discoveries occurred at varied times and on varied No Yes
problems.

Discoveries occurred with varying degree of reflec- No No
tive insight.

Newly discovered strategies were never immedi- No No
ately generalized; however, children with greater
reflective awareness generalized more rapidly.

Discoveries were constrained to avoid illegitimate Yes No
strategies.

However, the constraints that make HPM a good model of the empirical data
in one respect make it inadequate in other respects. Every time it is run,
HPM’s deterministic metacognitive mechanisms make the same sequence of
discoveries at the same time. All of HPM’s learning requires metacognitive
insight. Once a new strategy is discovered, it is immediately generalized to
all further problems.

The associative mechanisms of GIPS have a complimentary set of
strengths and weaknesses. Like most associative models, discoveries in GIPS
arise from a combination of experience and probability. Different runs of
GIPS could discover the min strategy at different times and on different
problems. However, the variation in when strategies are discovered does not
carry over to variation in how strategies are discovered. GIPS has no meta-
cognitive knowledge to enable it to achieve insight-driven discovery. The
lack of metacognitive knowledge makes it impossible for GIPS to constrain
its variation to legitimate approaches. Like most associative models, GIPS
is, in the end, a trial-and-error learner. Finally, although the associative
mechanisms of GIPS could be consistent with the gradual generalization of
new strategies, a lack of metacognitive awareness leaves GIPS unable to
model the finding that awareness of the new approach was related to its more
rapid generalization.

Perhaps it should not be surprising that both empirical and computational
research has failed to identify the one way that children discover the min
strategy. Why would evolution have favored the phylogenetic development
of humans so rigid as to have only a single path available for discovering
problem-solving strategies? It makes more sense to think of strategy discov-
ery as occurring through a varied set of mechanisms that can take advantage
of whatever mix of associative experience and metacognitive understanding
is available to an individual child at a particular point in development of a
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skill. In the remainder of this article, we sketch out what these mechanisms
might look like.

STRATEGY USE AS COMPETITIVE NEGOTIATION

The empirical and computational evidence concerning discovery of the
min strategy suggests the need for a new approach to conceptualizing the
ways that metacognitive and associative knowledge interact in strategy dis-
covery. Consistent with the approaches we reviewed, we propose that the
domain specific knowledge involved in strategy use can be represented in
different forms by a metacognitive system and an associative system. How-
ever, we propose further that metacognitive and associative versions of the
same strategy can exist simultaneously and that strategy use emerges from
a competitive negotiation between the two forms of the strategy.

What is competitive negotiation? Consider the example of a rider and her
horse. Although horse and rider move through the environment as a single
system, each has unique ways of representing and learning about the experi-
ence. If it is the first time they have been on a particular path, the rider will
make most of the navigational decisions. She plans a route and uses the reins
and spurs to encourage the horse to follow the plan. Although she can point
the horse in a general direction and encourage the horse to move faster or
slower, she does not specify the placement of each hoof. The horse scans
the ground in front of it, continuously deciding how to coordinate the com-
mands of the rider with the constraints of the terrain and its own physical
limits.

When the horse becomes more familiar with the route, the rider no longer
needs to provide continuous guidance because the horse has learned the
choices that compose that path. Freed from the burden of navigating, the rider
can now give the horse its head and relax and enjoy the scenery. However, if
something catches the rider’s eye and she decides to deviate from the usual
path, her high-level commands may initially be less potent than before. The
horse has learned to follow one path and suddenly the rider is asking it to
follow another. The animal may initially choose to ignore the novel com-
mands, but it will find this an increasingly difficult task as the spurs dig
deeper and the reins pull tighter.

The relation between a rider and a horse is a competitive negotiation. It
is a negotiation because the pairs’ movement through the environment is
defined by the overlap of the independent decision making processes of both
individuals. It is competitive because the independent decision-making pro-
cesses can come to different conclusions, and the result of the negotiation
depends upon a test of wills. The rider and horse do not resolve differences
by discussion; they do not seek intersubjectivity, and they do not try to create
a cooperative solution. They act. It is the strength and insistence of their
actions that determines which one decision will be the one that both follow.

The relation between metacognitive and associative knowledge can also
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be described as a competitive negotiation. The metacognitive and associative
systems maintain separate representations and decision making processes.
Metacognitive knowledge is explicit and potentially verbalizable and may
be expressed as production rules, plans, or heuristics. Associative knowledge
is implicit and non-verbalizable and might be best expressed as statistical
associations among units of action and problem solving contexts. Although
they exist in the same mind, and although they are simultaneously working
on the same problem, the two systems are representationally encapsulated.
That is, neither system can directly inspect or modify the contents of the
other. Metacognitive and associative knowledge only interact through the
output of independent encoding and decision-making processes.

At each problem-solving step, the systems independently encode the prob-
lem, match their representation of the problem to their respective knowledge
bases, and select appropriate problem solving actions. Behavior is directed
by the first system to produce a strongly supported decision about what to
do next.2

The outcome of this competition is in large part determined by how much
relevant, domain-specific experience the associative system includes. When
the problem solver is working in familiar contexts, the fast, efficient associa-
tive knowledge base often produces satisficing decisions before the cumber-
some metacognitive system reasons its way to a solution. However, in novel
contexts where the associative system has not been tuned by experience, it
can fail to produce a confident decision about what to do next. Such impasses
open a window for the slower, though more broadly applicable, metacogni-
tive system to reason its way to the next problem-solving action.

The outcome of the competition can also be determined by the goals
adopted by the metacognitive system. In familiar contexts, where the associa-
tive system easily wins competition to direct processing, the metacognitive
system is relieved of the burden of micromanaging strategy use. In these
cases, it is free to give the associative system its head and focus on something
else. The metacognitive system may focus on monitoring the progress of the
associative system, checking the partial products of problem solving to make
sure that no unexpected obstacles arise that would require its intervention.
Such situations may also provide opportunities for the metacognitive system
to notice and encode interesting aspects or concomitants of strategies that
are not necessarily related to the immediate goal of solving the problem.3

2 The astute reader will wonder why the horse-and-rider analogy does not lead immediately
to a classic homonculous problem. Although the metacognitive system (the rider) is indeed
a partially independent system from the associative system (the horse), it is a self-contained
system, and so needn’t itself have a meta-meta-cognitive system, etc. Therefore, although we
are describing an architecture with, so to speak, two minds, is has precisely two minds and
not an infinite number of them.

3 The metacognitive system may also decide to focus on something other than the problem
at hand or the strategy being used. One example would be when a driver’s associative system
handles the actions necessary to operate the vehicle while his metacognitive system carries
on a conversation with the passenger. Another would be a reader whose associative system
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If monitoring or noticing leads the metacognitive system to perceive a
need to intervene, it can increase its ‘‘bid’’ to control the problem-solving
process by altering problem solving goals. Possible triggers for such inter-
vention could include, among other things, the metacognitive system notic-
ing something interesting about prior solutions, becoming tired of using the
same approach, perceiving a time-saving shortcut, or encountering explicit
instructions (e.g., from a teacher) about how to solve a problem. In such
cases, the metacognitive system may adopt the goal, not just of solving the
problem, but of solving it in a particular way.

By adopting this variation on the typical problem solving goal, the meta-
cognitive system can influence the associative system to produce variation
in strategy use that would never arise as a result of purely associative compe-
tition. It is important to note, however, that the input of associative mecha-
nisms is never excluded from the decision-making process. Like a rider on
a horse, the metacognitive system can suggest directions, but the associative
system (the horse) remains the engine of problem solving. Increased meta-
cognitive control shapes the associative landscape but can never replace it.

This view of strategy use as a process of competitive negotiation has the
potential to account for changes in strategy use over time that are consistent
with the four crucial characteristics of children’s discovery of the min
strategy.

Discoveries Occur at Varied Times and on Varied Problems

When children are novices in a domain, and no strategy has become well
established, the metacognitive system must explicitly decide to carry out
each step in a strategy, sending commands to the associative system that
executes these steps. With experience, the associative mechanisms begin to
learn an automatized analog of the metacognitive version of the skill. As the
efficient selection processes of the associative system gain primary control
over behavior, the role of the metacognitive system increasingly is to observe
and learn.4

If it notices something interesting, the metacognitive system can choose
to exert supervisory control, resulting in an unusual competition between

carries on processes of decoding and scanning a page of text while the metacognitive system
day-dreams. Note, however, that in both of these examples, the disconnect is not complete.
Treacherous driving conditions trigger increased metacognitive involvement in driving and a
lull in the conversation. Eventually, the metacognitive system notes that the reader does not
remember anything from the preceding paragraphs and directs the hand to turn back a page;
the eyes to refocus on the beginning of the section, and the scanning and decoding to begin
again.

4 It is worth emphasizing that in the competitive negotiation theory, as contrasted with trans-
lation approaches, the skill is learned by the associative system through its experience on the
task, not through any exchange of knowledge with the metacognitive system. As with the
horse and rider, the rider cannot just tell the horse the route, she must ride the horse through
it a number of times.
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metacognitive and associative mechanisms. Choices that had most recently
been made by associative mechanisms alone must now be made through a
combination of bids from both systems. Due to this additional competition,
and due to the slow and resource-intensive nature of the metacognitive sys-
tem’s control processes, problem solvers will show unusually long response
times as they approach the discovery of a new strategy. The problem solver
may be in a state of flux over several trials until the struggle between meta-
cognitive and associative mechanisms finally works itself out.

Because these unusual competitions were triggered by noticing rather than
impasses, they would be most likely to occur on problems with which chil-
dren are familiar. Familiarity increases the likelihood that children have de-
veloped an associative version of an appropriate strategy, thus increasing the
likelihood that they have sufficient metacognitive resources free to observe
and notice. Familiarity also increases the likelihood that children have meta-
cognitive experience that can be used to compare solutions to the same prob-
lem over time, thus increasing the likelihood that they will notice something
interesting.

Discovery by metacognitive noticing will not occur at the same moments
in different individuals. When discoveries are driven by impasses, they occur
predictably: If children do not know an applicable strategy, then they must
invent a new one. However there are not such clear criteria for when an
observation has become sufficiently interesting to merit the creation of a new
strategy. Observations are probably developed over several trials where a
strategy was used successfully. The speed and the detail with which observa-
tions are developed depends on a range of factors. What particular problem
solving tasks has an individual encountered? Has an individual’s metacogni-
tive system mostly focused on prior strategy use or has it been daydreaming
while the associative system orchestrates problem solving? Does an individ-
ual remember a strategy that she observed another child using, or does she
perhaps remember something a teacher or a parent told her?

Any and all of these factors, among others, are potential contributors to
the metacognitive system deciding to intervene in problem solving. Because
these factors vary widely between individuals—even individuals who are
participating in the same microgenetic study—the moment at which the
metacognitive system chooses to exert supervisory control will be corre-
spondingly varied.

Discoveries Occur with Varying Degrees of Reflective Insight

A system based on competitive negotiation makes discoveries with a range
of metacognitive insight. The knowledge of the metacognitive system is po-
tentially verbalizable. When Siegler and Jenkins asked children for immedi-
ate retrospective verbal protocols, they were, in terms of this approach, ask-
ing for a dump of the metacognitive system’s working memory. The quality
of retrospective reports depends on the extent to which metacognitive mecha-
nisms had been recently activated and used in the discovery process.
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The metacognitive system can make bids of varying strengths to exert its
supervisory control. Sometimes, a weak bid from the metacognitive system
will be enough to nudge the associative system to select a new path. In these
cases, there would be little metacognitive knowledge available to be reported
because little metacognitive knowledge was involved in the discovery. If the
metacognitive system takes a larger role in directing discovery of the new
strategy, there will be a greater wealth of recently activated knowledge avail-
able to be included in the retrospective protocol. In the extreme case where
the metacognitive system’s bid is so strong that it effectively micromanages
each subgoal in a problem solving strategy, the problem solver would be
able to report a trace that outlines each procedure used to solve the problem.

Regardless of the level of metacognitive involvement in any particular
discovery, new strategies would not be immediately generalized to all possi-
ble problems. In domains where children have at least a moderate amount
of experience, the faster associative mechanisms are typically able to win
competitions over the slower metacognitive mechanisms. Thus, on the trial
following a discovery, a newly emerged strategy would be guaranteed of
being chosen only if it could win competitions with established competitors
on the associative level. This is a difficult challenge for a strategy that has
a track record of just one use. Over time, if the newly discovered strategy
provides a reliable advantage over older strategies, it comes to dominate the
competition. But initial uses of a newly discovered strategy would be ex-
pected to be occasional at best.

Greater Reflective Insight Is Associated with Faster Generalization of the
New Strategy

Although associative mechanisms often play the greater role in determin-
ing which strategies are selected, it is not the case that metacognitive mech-
anisms have no influence. When children’s strategy discoveries involve
greater input from metacognitive mechanisms, children create a richer meta-
cognitive knowledge base about the new strategy. This knowledge base may
include rules about when the new strategy is most useful, or memories about
why a strategy was efficient or fun to execute. Acting on this knowledge,
children may adopt the goal of solving a problem with a particular strategy,
rather than solving a problem with whatever strategy is suggested by the
associative system. This will lead to metacognitive insight about use of a
new strategy being associated with more rapid generalization of it to new
problems. For example, metacognitive mechanisms might notice that a prob-
lem has addends that differ widely in size (e.g., 2 1 9), might remember
that it once used a strategy that minimized counting (the min strategy, for
instance), and might set the goal of solving this particular problem with that
particular strategy.

Thus, although most strategy selection is determined at the associative
level, metacognitive mechanisms may sometimes take control. The richer the
metacognitive knowledge base about a strategy, the more likely that mostly
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metacognitive strategy selection will take place. With each use of a helpful
new strategy, the associative basis for its use will strengthen, and the strategy
will win more competitions in the future. Thus, even occasional metacogni-
tive uses of a strategy can provide the boost that a new strategy needs to
become a serious contender to win competitions through its associative
strength.

Discoveries Are Constrained to Avoid Illegitimate Strategies

As associative mechanisms assume more responsibility for directing strat-
egy use, and the metacognitive system is free to observe, the initial metacog-
nitive version of the strategy begins to decay. In well-practiced domains, the
metacognitive system will not often mount a serious challenge to associative
selection; thus, the metacognitive rules that specify how to execute a strategy
will eventually stop being activated in the course of normal problem solving.
The metacognitive system, like the associative system, is a part of normal
human memory. Elements in memory that receive little activation are harder
to recall than elements that are regularly activated (Anderson, 1990). Eventu-
ally, rarely activated memories may be forgotten.

It is this process of forgetting metacognitive knowledge that leads to the
creation of goal sketches. Recall that goal sketches enable children to recog-
nize legitimate novel strategies even before they learn how to use the strat-
egy, and even if they cannot explain the basis for that recognition. When
they are complete novices at addition, children do not possess goal sketches
for arithmetic strategies. If forced to add, they would not exhibit constrained
discovery. They would have no recourse but to fall back on using uncon-
strained trial-and-error.5

The process that eventually produces a goal sketch begins when children
learn their first addition strategy. Consider a child who is explicitly taught
to execute the sum strategy. If the child learns the procedures correctly, the
entire sum strategy is represented as a complete series of subgoals in the
metacognitive system. When the child uses the sum strategy, this sequence
of subgoals micromanages the associative version of the strategy.

As the child accumulates experience, associative mechanisms gradually
assume responsibility for selecting and executing the procedures of the sum
strategy. As it loses competitions to control behavior, the metacognitive sys-
tem has little to do but observe the output of the associative system, possibly
looking for interesting regularities or checking the partial products of the

5 Although complete novices do not have addition goal sketches, it is not the case that they
know nothing relevant about legitimate addition strategies. By the time they learn to add, most
children are already relatively skillful at counting—a vital skill in simple addition. Children
who utilize counting in addition strategies will be able to call upon established counting associ-
ations: between 1 and 2, 2 and 3, and so on. When inventing addition strategies, these children
would not be expected to violate counting principles. However they would be expected to
make errors in how they orchestrate the counting procedures.
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associative system’s strategy choices (e.g., whether the first addend was rep-
resented.) Neither of these activities require the metacognitive system to acti-
vate its entire representation of the strategy, but they will often require that
the metacognitive system activate the primary subgoals of the strategy. The
metacognitive mechanisms would have difficulty monitoring the execution
of a strategy or noticing interesting properties of it unless they were also
able to carve the strategy into meaningful units. Thus, the metacognitive
system would continue to activate the main subgoals of its representation of
the strategy, even while the rest of the representation was atrophying from
disuse.

This process of differential activation would accelerate as children learn
a greater number of addition strategies. As previously noted, although legiti-
mate addition strategies vary in their constituent procedures, they all share
three essential subgoals: To quantitatively represent the first addend, to quan-
titatively represent the second addend, and to quantitatively represent the
sum. The metacognitive representations of these shared elements could re-
ceive activation when any legitimate strategy is used. At the same time, the
metacognitive representations of elements not shared by all strategies would
receive less activation as children use a greater number of arithmetic strate-
gies.

The outcome of this process is inevitable. Eventually, differential activa-
tion causes the essential skeletal structure of a strategy to emerge from what
started as a complete metacognitive specification of a strategy. At this point
the problem solver has developed a goal sketch.

This process of sculpting constraints through forgetting is the fundamental
reason why goal sketches are useful in guiding discovery. When the meta-
cognitive representation of specific procedures decay, but the representation
of their goal structures remain, children become able to constrain discovery
of new procedures and evaluate novel procedures that they encounter by
comparing them to the goals of the task. If the metacognitive system retained
the detailed description of the sum strategy, it would provide too many con-
straints to allow any new discovery. In short, the power of goal sketches is
that decay of metacognitive representation of component procedures pro-
vides freedom to generate new procedures that are constrained to meet basic
task goals but that can differ from the original procedure in how they do so.

HARDENING THE CORE

Klahr (1992) distinguished two levels of theorizing about cognitive mech-
anisms. In soft-core theories, mechanisms and hypotheses are expressed ver-
bally, and perhaps graphically. In hard-core theories, the verbal and graphical
representations are translated into the code of a running computer simulation.
Both soft and hard core theorizing have their place in developmental psychol-
ogy. However, we agree with Klahr that producing running computer simula-
tions is a crucial step in theorizing because they provide a rigorous test of
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the internal consistency of the model and of its sufficiency to produce the
intended behavior. Unexpected behavior of such simulations may also spark
new predictions and experiments to test those predictions (Siegler & Shipley,
1995).

In this article we have a outlined a soft-core model for strategy discovery
though competitive negotiation. In doing so, we have begun with empirical
constraints, explored alternative models, and proposed a set of alternative
mechanisms that we believe are sufficient to match the empirical record.
However our soft-core proposals are only the first step in fully developing
a model of competitive negotiation. We are currently completing the second
step by developing a computer simulation model of min strategy discovery
through competitive negotiation. In developing a running model, we need
to answer the questions raised by the verbal description of the model we
have presented here. These include: What is the exact arithmetic knowledge
represented in the metacognitive and associative systems at different points
in development? What functions and parameters are necessary to implement
competitive negotiation? How much experience is required to learn an asso-
ciative version of the sum strategy? How exactly does a metacognitive plan
fade into a goal sketch?

Artificial Intelligence researchers refer to architectures that combine sym-
bolic and associative components as ‘‘hybrid models’’ (Gutknecht, 1992;
Medsker & Bailey, 1992). Since the first, we have conceptualized, and more
importantly implemented, strategy use in hybrid terms. Both the Siegler and
Shrager (1984) and the Siegler and Shipley (1995) models are hybrid models
in the sense that symbolic problem-solving trains an associative memory for
arithmetic facts; no direct translation from one representation to the other
takes place even though these models learn to give answers more efficiently.
The resulting associations compete with the strategies to provide answers.
Unfortunately, neither of these models is capable of strategy discovery in
the way that we have described it because in these models the strategies
themselves are not decomposed and distributed through the associative mem-
ory. However, they provide a starting point for our current simulation effort
in which we combine metacognitive discovery processes, similar to those
found in HPM, with an associative component that can represent the constit-
uent procedures of strategies as well as just arithmetic facts (as was done in
Siegler & Shrager, 1984) or facts and the statistical selection criteria for
undecomposed strategies (as was done in Siegler and Shipley, 1995).6

6 ACT* (Anderson, 1983) represents problem-solving strategies in decomposed form and
in both declarative (approximately meta-cognitive) and procedural (approximately associative)
forms. However, the process of ‘‘proceduralization’’ (approximately compliation) in ACT*
is one of translation from declarative to procedural which is supposed to happen internally
as a result of practice. Furthermore, neither ACT*, nor any other cognitive model we are
aware of, has separate execution mechanisms that could enable competetive negotiation.
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Aside from the usual challenges of specifying the theoretical nuts and
bolts, we expect that simulating strategy use as competitive negotiation will
help us confront a more general issue. The recent proliferation of micro-
genetic studies has begun to change the field’s understanding of what it
means to make a discovery. Based on recent evidence, it seems clear that
the characteristics of discovery revealed in the Sielger and Jenkins study are
not limited to simple arithmetic. Across a wide range of domains and ages,
strategy discoveries occur on varied problems and at varied times, occur
with varying degrees of reflective insight, are generalized slowly, and are
constrained in ways consistent with goal sketches (Kuhn, 1995).

These data converge to create a new view of what it means to discover
a strategy. Discovery has often been conceptualized as an elevated, special
form of reasoning, used primarily or exclusively when problem solvers were
at impasses. The resolution of those impasses was often described as involv-
ing a sudden flash of insight, or as the product of careful metacognitive rea-
soning. This perspective, however, does not fit the data on children’s discov-
eries, either on familiar tasks, such as making change and solving arithmetic
problems (Lawler, 1985; Siegler & Jenkins, 1989), or on novel tasks, such as
scientific experimentation and map-making (Karmiloff-Smith, 1992; Kuhn,
Garcia-Mila, Zohar, & Anderson, 1995; Schauble, 1990).

Nor do existing computer simulations of discovery appear sufficient to
account for the phenomena. The problem goes beyond the models we have
reviewed here to encompass all models that would rely exclusively on meta-
cognitive insight or exclusively on associative mechanisms. Simply put,
models based only on metacognitive mechanisms, or only on associative
mechanisms seem insufficient to explain the complex mixture of insightful
and uninsightful behavior that the microgenetic studies have revealed. To
cite one example, they seem insufficient to explain how children can often,
but not always, exhibit substantial metacognitive understanding on their first
use of a new strategy, go on to generalize the strategy slowly regardless of
the degree of understanding exhibited, but extend it somewhat more rapidly
if they showed insight than if they did not. In general, to account for people’s
discoveries, the next generation of models will need to account for more
variability within individuals, more variability across individuals, and more
variability across contexts. We believe that conceptualizing strategy use as
a competitive negotiation between metacognitive and associative knowledge
is a step toward this goal.
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